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Abstract
The main aim of this study was to assess the effect of plot dimension on Weibull parameters estimation in describing 
diameter distribution of  Eucalyptus camaldulensis Dehn plantation, Afaka Forest Reserve, Kaduna State, Nigeria. 
Information on diameter distribution should be obtained from the rightful data analytical tool which will not mislead 
the manager in decision making. As such, plot dimension should be varied to accommodate a minimum of 60 trees 
which proves to have a better fit and prediction with Weibull parameters estimated through Maximum Likelihood. 
The parameters of Weibull were estimated from three dimensions (20 x 20m, 30 x 30m and 40 x 40m) using 
Maximum likelihood (MLEW), Traditional method of moment (MMW), Moment incorporating skewness (MISW) 
and percentile. (PW). The data used for this study came from temporary sample plots (TSP). The Weibull parameters 
were estimated from the three plots dimensions independently through the above parameters estimation method. The 
three plots dimensions were compared vis-a-vis the parameter estimation method. The comparison was based on 
Kolmogorov-Sminov (K-S), mean square error (MSE), mean absolute error (MAE) and bias. Based on plots 
dimension and parameter estimation method, plot size 40 x 40m and MLE proves to have better fitting and prediction. 
Hence, a larger sample size with MLE appears to be the most suitable for Weibull parameters fitting and diameter 
prediction study. 

Keywords: Diameter distribution prediction, Weibull distribution function, parameter estimation methods, plot 
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Introduction
In sustainable forest management, diameter 

distribution model plays a vital role in forecasting 
the stand structure which gives the manager an 
overview of what the forest looks like and how is 
likely going to be in the future. With this structure, 
the forest manager can make a sound decision in 
terms of what quantity to cut, when to cut, what 
amount of stocking is required to replace the 
amount needed to be cut, and what management 
practice to adopt etc. Ideal management of forests 
is based on having accurate information about the 
status of standing forest inventory. One of this 
basic information is the distribution of trees in 
diameter classes, which allows the tree marker to 
interfere in stands more confidently to preserve 
the stand structure for sustainable purposes 
(Harter, and Moore, 1965). This information 
should be collected from a reasonable sample size 
of not less than 40 stands (Sghaier et al., 2016). 

DeLiocourt (1898) pioneered the first study 
on tree diameter distribution. The author observed 
the inverse J-shaped when the number of trees 
was plotted against equal diameter classes as a 
frequency histogram. The inverse J-shaped is a 
typical nature of natural forests that is, a large 
number of trees with a decreasing frequency as 
the diameter increases. The nature of a forest 
plantation is a Gauss distribution, that is, most 
trees cluster near the average diameter with 
decreasing frequency at smaller and larger 

diameters. Different models of probability density 
functions have been applied to describe the 
structure of different forest stands including the 
Johnson's S  (Gorgoso-Varela and Rojo-B

Alboreca, 2014), beta (Loetsch et al., 1973; 
Gorgoso et al., 2012; Ogana et al., 2015), gamma 
(Zheng and Zhou, 2010; Eslami et al., 2011; 
Ogana et al., 2015) and Weibull distribution 
(Palahi et al., 2007; Gorgoso-Varela and Rojo-
Alboreca, 2014; Ogana and Gorgoso-Varela, 
2015). Among these distributions, the Weibull 
distribution is the most widely used in forestry. 
This is because of its relative flexibility in 
describing varieties of shapes, ease of parameter 
estimation, and simplicity of estimating 
proportions in different size classes.  

To date, different plots dimension is use for 
diameter distribution modelling e.g. 0.04 ha, 0.05 
ha, 0.0625 ha, 0.09 ha, 0.5 ha etc. The choice of 
plot dimension is based on the intuition of the 
inventory expert. Most published forestry 
literatures varied the plot dimensions to achieve a 
sizeable number of trees in plots, that is, a 
minimum of 30 sample trees (e.g. Gorgoso-Varela 
et al., 2015). The estimate of the parameters of 
distributions will vary with plot dimension; 
consequently, the overall fitting performance of 
the models. The question that comes to mind is, is 
there an optimum plot dimension for an effective 
distribution study? To address this question, we 
evaluated the effects of plot dimension on the 
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Weibull parameter using different fitting 
methods. 

Methodology
Data Collection
The data for this study were collected from a total 
of 48 temporary sample plots (TSPs) in the 
Eucalyptus camaldulensis Dehn plantation, 
Afaka Forest Reserve, Kaduna State, Nigeria. 
Three plot dimensions were considered in this 

study:  20m x 20m (0.04 ha), 30m x 30m (0.09 ha) 
and 40m x 40m (0.16 ha). These plots were 
established across different age series to capture 
site and age variations. All live trees within the 
sampled plots were measured for diameter at 
breast height and total height. The following stand 
variables were computed from the data: density, 
quadratic mean diameter, dominant height, basal 
area and volume etc. The descriptive statistics as 
presented in Table 1 below

 

                   

 Weibull Distribution  
The 3 -parameters Weibull distribution 
(Weibull 1951) was used for this study. It is 
expressed as:  

1

The Weibull cumulative distribution 
function (CDF) is obt ained by the integration 
of equation

 

1. It is expressed as:

      2

    

                          3 

Maximum Likelihood (MLW): this 
involves taking the partial derivatives of the 

                                                   (4)

Where:  n  the number of sample 
observations and x  (cm) is the diameter of each i

tree. Other parameters are previously defined in 
equation 1.

Traditional Method of Moment (MMW):  is 
based on the relationship between the parameters 
of the Weibull distribution and the first and  

second moments of the diameter distribution (i.e. 
the mean and variance, respectively). This 
method used by Stankova and Zlatanov, (2010); 
Gorgoso et al. (2012) and Ogana et al. (2015). It 
is expressed as:

Where: a is the location parameter, d is the 
2arithmetic mean diameter of the distribution, σ  is 

the variance and Г(i) is the gamma function. 
Equation 6 was resolved by a bisection iterative 
procedure in SAS (SAS Institute Inc., 2003).
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Stand variable  Mean  Maximum  Minimum  Standard deviation
     Dbh (cm)  10.3  47.2  2.0  6.2  
Quadratic mean  11.8  23.9  5.9  3.8  
Dominant Height (m)  21.0  30.6  9.0  5.4  
Density (N/ha)  753.0  1328  448.0  202.8  
Basal area (m2/ha)

 
8.52

 
27.38

 
1.73

 
4.92

 
Volume (m3/ha)

 
151.22

 
792.50

 
9.70

 
112.57

 
No. of Plots = 48

 
    

Table 1: Descriptive Statistics of Stand Variables

Where: F(x) is the Weibull cumulative 
distribution function; x is tree diameter to be 
measured, a, b and c are the location, scale and 
shape parameters of the distribution respectively.

Fitting Methods
In this study, four methods were used to 

estimate the parameters of the Weibull 
distribution, these include: Maximum Likelihood 
(MLW), Traditional Method of Moments 
(MMW), Moments Incorporating Skewness 
(MISW) and Percentiles (PW). These methods 
were used to fit the Weibull distributions to the 
data  f rom the  three  plot  d imensions  
independently.

 (5) 

      (6) 
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et al. (2003). It is expressed as: 

 (7)

   (8) 

  (9)

    (10) 

5
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Where: α  is the sample skewness, other variables 3

and parameters are previously defined in equation 
5 and 6. Similarly log-likelihood function 
concerning the distribution's parameters and 
setting the expression to zero, then solve by the 
numerical iterative algorithm to give the 
estimates. Thus, the computation was done by 
minimizing the negative log-likelihood function 
of equation 1 using the 'optimum function' in R (R 
Core Team, 2016). The log-likelihood of Weibull 
function is expressed as: equation 7 was resolved 
by bisection iteration in SAS.

Percentiles Method (PW): the Dubey (1967) 
percentile method was used to estimate the 
parameters of the Weibull distribution. The values 
of the parameters were computed with the 
following expressions:

Where: P and P  are the sample percentiles r t

with 0 < r < 1 and 0 < t < 0. The proposed values of 
r = 0.97 and t = 0.17 by Dubey (1967) was used for 

this study.
The estimation methods of the Weibull 

distribution across the different plot dimensions were 
assessed based on Kolmogorov-Smirnov (K-S), 
mean square error (MSE), mean absolute error 
(MAE) and bias. The smaller the values are, the better 
the estimation method. 

Result
The summary statistics of the estimated parameters 
of the Weibull distribution fitted with MLE, 
percentile, traditional moments (MOM) and 
moments incorporating skewness (MIS) for the 
dimensions are presented in Table 2. The Weibull 
location parameter was constrained to a minimum 
diameter minus 0.5; as such, the four fitting methods 
had the same value for the location parameter for the 
three dimensions. The mean, maximum, minimum 
and standard deviation of the location parameter 
were 7.70, 12.10, 1.60 and 4.47 for 20m x 20m, 6.27, 
10.40, 1.60 and 3.95 for 30m x 30m and 6.97, 11.10, 
1.60 and 4.03 for 40 x 40m, respectively. The scale 
parameter had the highest mean, maximum and 
standard deviation values of 8.26, 13.83 and 3.43, 
respectively in 20m x 20m under the MIS method. 
MOM had the least value for the scale parameter 
under the same plot dimension. The Weibull shape 
parameter fitted with MIS had the largest mean, 
maximum, minimum and standard deviation of 2.73, 
5.93, 1.18 and 1.31, respectively in 20m x 20m plot 
dimension. The method of MLE in 40m x 40m gave 
the smaller shape parameter value.Table 2: 
Descriptive statistics of the Weibull parameters 
across three plot dimension
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Table 2 : Descriptive statistics of the Weibull 
parameters across three plot dimension 

Plot dimension 
(m) Method Parameters Mean Maximum Minimum Std. Dev 

20 x 20 Percentile Location 7.70 12.10 1.60 4.47 

  
Scale 6.27 9.70 4.00 1.61 

  
Shape 2.07 3.27 1.30 0.54 

30 x 30 
 

Location 6.97 10.40 1.60 3.95 

  
Scale 7.39 11.60 5.20 2.39 

  
Shape 1.97 2.47 1.59 0.30 

40 x 40 
 

Location 6.97 11.10 1.60 4.03 

  
Scale 6.50 9.70 5.90 1.28 

  
Shape 1.88 2.29 1.71 0.21 

20 x 20 MLE Location 7.70 12.10 1.60 4.47 

  
Scale 6.20 8.60 3.95 1.28 

  
Shape 1.96 2.73 1.51 0.41 

30 x 30 
 

Location 6.97 10.40 1.60 3.95 

  
Scale 7.22 10.54 5.19 2.09 

  
Shape 1.95 2.48 1.62 0.29 

40 x 40 
 

Location 6.97 11.10 1.60 4.03 

  
Scale 6.70 10.42 5.68 1.61 

  
Shape 1.90 2.26 1.74 0.21 

20 x 20 MIS Location 7.70 12.10 1.60 1.29 

  
Scale 8.26 13.83 3.84 3.43 

  
Shape 2.73 5.93 1.18 1.31 

30 x 30 
 

Location 6.97 10.40 1.60 3.95 

  
Scale 8.22 11.44 5.47 1.94 

  
Shape 2.30 3.16 1.46 0.54 

40 x 40 
 

Location 6.97 11.10 1.60 4.03 

  
Scale 6.94 10.49 5.57 1.63 

  
Shape 1.98 2.56 1.55 0.31 

20 x 20 MOM Location 7.70 12.10 1.60 4.47 

  
Scale 6.17 8.60 3.83 1.33 

  
Shape 1.75 2.49 1.27 0.40 

30 x 30 
 

Location 6.97 10.40 1.60 3.95 

  
Scale 7.20 10.54 5.10 2.12 

  
Shape 1.76 2.24 1.50 0.28 

40 x 40 
 

Location 6.97 11.10 1.60 4.03 

  
Scale 6.66 10.41 5.64 1.61 

  
Shape 1.71 2.05 1.48 0.21 
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The overall fitting performance of the estimation 
methods across the different plot dimensions are 
presented in Table 3. The result showed that the 
performance of the estimation methods improved 
as the plot dimension increased i.e., from 20 x 
20m to 40 x 40m. The best result was observed in 
40 x 40m plot dimension for the four estimation 
methods considered. The method of MLE had the 
smallest values for the fit indices for the three plot 
dimensions (20 x 20m, 30 x 30m and 40 x 40m); 

as such, ranked best. The K-S, MSE, MAE and 
bias values for MLE were 0.08979, 0.00410, 
0.04449 and 0.00525 in 20 x 20m, 0.06973, 
0.00172, 0.03079 and 0.00100 in 30 x 30m, and 
0.06997, 0.00126, 0.02618 and 0.00068 in 40 x 
40m, respectively. This was followed by 
percentiles and MOM. The method of MIS had the 
worst performance for the three plot dimensions. 
The fit indices values for the method MIS were 
usually 

Table 3: Comparison of Weibull parameters estimation methods across the three plot
 Dimension   

Plot Dim.  Fit Indices MLE Percentile MOM MIS 
20 x 20 K-S 0.08979 0.10045 0.09961 0.30329 

 

MSE
 

0.00410
 

0.00411
 

0.00453
 

0.00568
 

 

MAE
 

0.04449
 

0.04456
 

0.04548
 

0.05051
 

 

Bias
 

0.00525
 

0.00481
 

0.00655
 

0.01166
 

      
30 x 30

 
K-S

 
0.06973

 
0.09504

 
0.08409

 
0.18308

 

 

MSE
 

0.00172
 

0.00173
 

0.00182
 

0.00195
 

 

MAE
 

0.03079
 

0.03060
 

0.03136
 

0.03255
 

 

Bias

 
0.00100

 
0.00113

 
0.00179

 
0.00089

 

      
40 x 40

 

K-S

 

0.06997

 

0.08353

 

0.07955

 

0.13724

 

 

MSE

 

0.00126

 

0.00129

 

0.00141

 

0.00150

 

 

MAE

 

0.02618

 

0.02683

 

0.02747

 

0.02837

 

  

Bias

 

0.00068

 

0.00071

 

0.00128

 

0.00083

 
 

methods gave good prediction except the method 
of MIS. The MIS method had a different shape that 
is negatively skewed in 20 x 20m plot dimension 
(Figure 1) and a Gauss shape distribution in 30 x 
30m plot dimension. 

Figure 1: Observed relative frequency (ORF) and 
predicted relative frequency with MLE, MIS, 
traditional moment (TMOM) and percentile 
(PECTLE) methods in 20 x 20m plot dimension.  

The graph of the diameter distributions for 
the three plot dimensions are presented in Figure 
1-3. Plot 1 was used as the representative sample 
plot. The graph showed the observed and 
predicted relative frequency of tree using the four 
estimation methods per 1cm diameter class. All 

Figure 2: Observed relative frequency (ORF) and 
predicted relative frequency with MLE, MIS, 
traditional moment (TMOM) and percentile 
(PECTLE) methods in 30 x 30m plot dimension.
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Discussion
The effect of plot size on Weibull parameters 

has been investigated. The study reveals that the 
performance of the estimation methods improves 
as the size of the plot dimension increase. 
Minimum values for the fit indices were observed 
in 40 x 40m plot dimension. This is not surprising 
as there are more trees in the large plot dimension. 
In distribution modeling, the plot dimension is 
usually adjusted to have a minimum of 30 trees. 
This is in line with the central limit theory; which 
states that the distribution of the sum (or average) 
of the sample (n) will be approximately normal as 
the sample size increases, regardless of the 
underlying distribution. This study is in tandem 
with Saborowski (1994) who investigated the 
minimum sample size required to estimate the 
three parameters of the Weibull distributions. The 
author's simulation study showed that a sample 
size of 80 would produce satisfactory results. 
Furthermore, Shiver (1988) advocated a sample 
size of 50 for the estimated distribution to have 
less than 10% error in any diameter class. Sghaier 
et al. (2016) also varied plot dimension from 88 to 

2
835m  to accommodate at least 40 trees. The 
authors reported better performance in a larger 
plot dimension.

The method of MLE had the overall best 
performance in the different plot dimensions. 
Thus, it is the most suitable method for describing 
the diameter distribution of the forest stand. The 
MLE is an accurate, efficient and unbiased 
estimator. The quality of the estimated parameters 

from MLE can be ascertain by the computation of 
the standard errors of the estimates. In fact, it is the 
only estimation method that gives a means of 
assessing the quality of the estimate. Lei (2008) 
asserted that “the MLE is a commonly used 
procedure for the Weibull distribution in forestry 
because of its desirable properties”. Furthermore, 
Cao and McCarty (2006) reported that estimation 
of the parameters using maximum likelihood has 
been found to produce consistently better 
goodness-of-fit statistics compared to other 
methods, but it also puts the greatest demands on 
the computational resources. Although, this is not a 
major problem with the development of high-
speed computers and open-source statistical tools. 
Ogana and Gorgoso-Varela (2015) also reported 
better performance with MLE compare to moment 
and percentile methods in their study on 
comparison of estimation methods for fitting 
Weibull distribution to the natural stand in Oluwa 
forest reserve. 

The method of moments and percentile 
performed relatively well across the different plot 
dimension. However, these methods lack the desirable 
properties of the MLE method, except for the 
simplicity of computation. The method of MIS had the 
worst fits, especially for a smaller sample size.

Conclusion
This study has shown that plot size affects 

Weibull parameter estimates. The larger the size of 
the plot, the better the performance of the 
distribution. And in consequence, the better the 
overall prediction of the diameter distribution 

Figure 3: Observed relative frequency (ORF) and predicted relative frequency with MLE, MIS, 
traditional moment (TMOM) and percentile (PECTLE) methods in 40 x 40m plot dimension
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irrespective of the estimation method used. Thus, 
in any diameter distribution study, the plot 
dimension should be adjusted to accommodate a 
sizeable number of trees, especially in the stand 
with low density i.e., the number of tree per ha.
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